

Inner Product Space

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u>
Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

01

02

03

Introduction

Linear Form

Bilinear Form

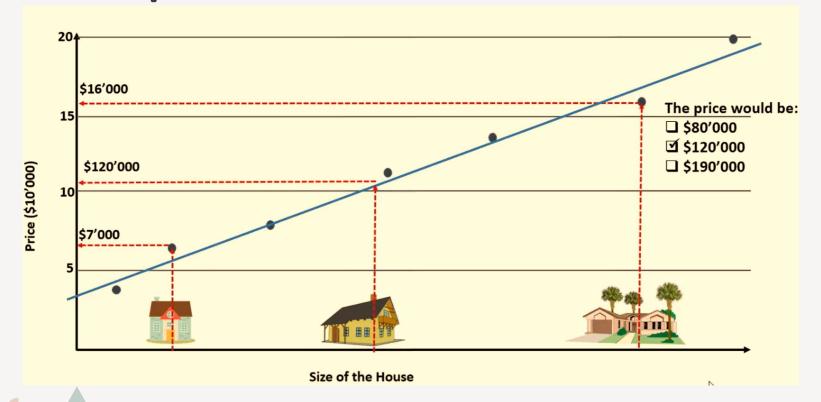
04

Bilinear Form on Complex Vector Space 05

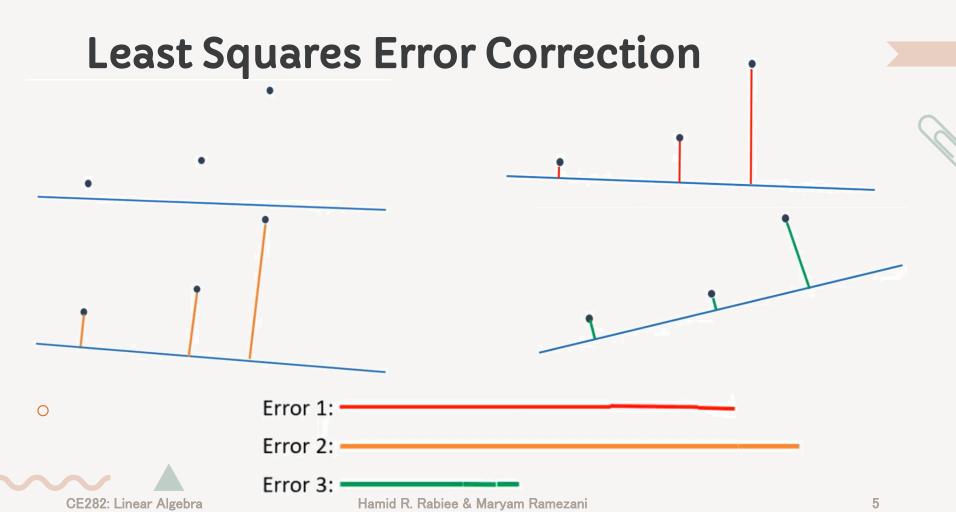
Inner Product

06

Inner Product Space


01

Introduction



Least Squares Error Correction

CE282: Linear Algebra

02

Linear Form

What are Linear Functions?

- $f: \mathbb{R}^n \to \mathbb{R}$ means that f is a function that maps real n-vectors to real numbers
- \Box f(x) is the value of function f at x (x is referred to as the argument of the function).
- $f(x) = f(x_1, x_2, ..., x_n)$: where $x_1, x_2, ..., x_n$ are arguments

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is linear if it satisfies the following two properties:

- \square Additivity: For any n-vector x and y, f(x+y)=f(x)+f(y)
- □ Homogeneity: For any *n*-vector *x* and any scalar $\alpha \in R$: $f(\alpha x) = \alpha f(x)$

Superposition property:

Definition

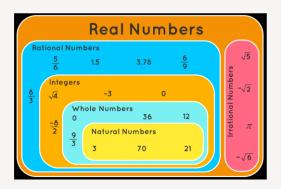
Superposition property:

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

Note

☐ A function that satisfies the superposition property is called linear

Homogeneity and Additivity


Definition

☐ Additivity:

For any *n*-vector *x* and *y*, f(x + y) = f(x) + f(y)

☐ Homogeneity:

For any *n*-vector *x* and any scalar $\alpha \in R$: $f(\alpha x) = \alpha f(x)$

$$f(a+\sqrt{5}b) \rightarrow a+b+\sqrt{5}b$$

C

What are Linear Functions?

☐ If a function f is linear, superposition extends to linear combinations of any number of vectors:

$$f(\alpha_1 x_1 + \dots + \alpha_k x_k) = \alpha_1 f(x_1) + \dots + \alpha_k f(x_k)$$

Inner product is Linear Function?

Theorem 1

A function defined as the inner product of its argument with some fixed vector is linear.

Proof?

$$f(x) = a^T x = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

0

What are Linear Functions?

Theorem 2

If a function is linear, then it can be expressed as the inner product of its argument with some fixed vector.

Proof?

O

What are Linear Functions?

Theorem 3

The representation of a linear function f as $f(x) = a^T x$ is unique, which means that there is only one vector a for which $f(x) = a^T x$ holds for all x.

Proof?

O

Linear Form Examples

Example

- Is average a linear function?
- Is maximum a linear function?

0

03

Bilinear Form

Bilinear Form over a real vector space

Definition

Suppose V and W are vector spaces over the same field \mathbb{F} . Then a function $f: V \times W \to \mathbb{F}$ is called a bilinear form if it satisfies the following properties:

- a) It is linear in its first argument:
 - i. $f(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = f(\mathbf{v_1}, \mathbf{w}) + f(\mathbf{v_2}, \mathbf{w})$ and
 - ii. $f(c\mathbf{v_1}, \mathbf{w}) = cf(\mathbf{v_1}, \mathbf{w})$ for all $c \in \mathbb{F}, \mathbf{v_1}, \mathbf{v_2} \in V$, and $\mathbf{w} \in W$.
- b) It is linear in its second argument:
 - i. $f(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = f(\mathbf{v}, \mathbf{w_1}) + f(\mathbf{v}, \mathbf{w_2})$ and
 - ii. $f(\mathbf{v}, c\mathbf{w_1}) = cf(\mathbf{v}, \mathbf{w_1})$ for all $c \in \mathbb{F}, \mathbf{v} \in V$, and $\mathbf{w_1}, \mathbf{w_2} \in W$.

Bilinear Form

Note

Let V be a vector space over a field \mathbb{F} . Then the **dual** of V, denoted by V^* , is the vector space consisting of all linear forms on V.

Example

Let V be a vector space over a field \mathbb{F} . Show that the function $g: V^* \times V \to \mathbb{F}$ defined by

$$g(f, \mathbf{v}) = f(\mathbf{v})$$
 for all $f \in V^*, \mathbf{v} \in V$

is a bilinear form.

Symmetric Bilinear Form

Definition

A **bilinear form** function $f: V \times V \to \mathbb{F}$ over a real vector space V is called **symmetric** if for all $v, w \in V$:

$$f(v,w) = f(w,v)$$

Bilinear Form arises from a matrix

Theorem 4

Every **bilinear form** function $f: V \times V \to \mathbb{F}$ over a real vector space V arises from a matrix for all $v, w \in V$:

$$f(v, w) = v^T A w$$

Proof?

Associated Matrices

Definition

If V is a finite-dimensional vector space, $B = \{b_1, \dots, b_n\}$ is a basis of V, and $f: V \times V \to \mathbb{F}$ be a **bilinear form** function the associated matrix A of f with respect to B is the matrix $[f]_B \in \mathbb{F}^{n \times n}$ whose (i,j)-entry is the value $f(b_i,b_j)$.

$$f(v, w) = v^T A w = v^T [f]_B w$$

$$[f]_{\mathcal{B}} = \begin{pmatrix} f(b_1, b_1) & \dots & f(b_1, b_n) \\ \vdots & & \vdots \\ f(b_n, b_1) & \dots & f(b_n, b_n) \end{pmatrix}$$

Associated Matrices

Note

The associated matrix changes if we use a different basis.

Example

For the bilinear form $f\left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix}\right) = 2ac + 4ad - bc$ on \mathbb{F}^2 , find $[f]_B$ for basis $B = \{\begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 4 \end{bmatrix}\}$ and $[f]_P$ for basis $P = \{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\}$

04 Bilinear Form Over Complex Vector Space

Bilinear Form over a complex vector space

Definition

Suppose V and W are vector spaces over the same field \mathbb{C} . Then a function $f: V \times W \to \mathbb{C}$ is called a bilinear form if it satisfies the following properties:

- a) It is linear in its first argument:
 - i. $f(\mathbf{v_1} + \mathbf{v_2}, \mathbf{w}) = f(\mathbf{v_1}, \mathbf{w}) + f(\mathbf{v_2}, \mathbf{w})$ and
 - ii. $f(\lambda \mathbf{v_1}, \mathbf{w}) = \lambda f(\mathbf{v_1}, \mathbf{w})$ for all $\lambda \in \mathbb{C}, \mathbf{v_1}, \mathbf{v_2} \in V$, and $\mathbf{w} \in W$.
- b) It is conjugate linear in its second argument:
 - i. $f(\mathbf{v}, \mathbf{w_1} + \mathbf{w_2}) = f(\mathbf{v}, \mathbf{w_1}) + f(\mathbf{v}, \mathbf{w_2})$ and
 - ii. $f(\mathbf{v}, \lambda \mathbf{w_1}) = \overline{\lambda} f(\mathbf{v}, \mathbf{w_1})$ for all $\lambda \in \mathbb{C}, \mathbf{v} \in V$, and $\mathbf{w_1}, \mathbf{w_2} \in W$.

Bilinear Form over a complex vector space

Bilinear forms on \mathbb{R}^n	Bilinear forms on \mathbb{C}^n
<u>Linear</u> in the first variable	<u>Linear</u> in the first variable
<u>Linear</u> in the second variable	Conjugate linear in the second variable

05

Inner Product

Inner product over real vector space

Definition

An inner product is a positive-definite symmetric bilinear form.

- 1. $\langle v, v \rangle = 0$ if and only if v = 0.
- 2. $\langle w, v \rangle = \langle v, w \rangle$.
- 3. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ for all $u, v, w \in V$.
- 4. $\langle cw, u \rangle = c \langle w, u \rangle$ for all $u, w \in V$ and $c \in \mathbb{R}$.
- 5. $\langle v, v \rangle \geq 0$ for all $v \in V$.

Inner Product

Why for bilinear form I wrote just two properties instead of four properties?

☐ Using properties (2) and (4) and again (2)

$$\langle w, cu \rangle = \langle cu, w \rangle = c \langle u, w \rangle = c \langle w, u \rangle$$

Using properties (2), (3) and again (2) $\langle w, u + v \rangle = \langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle = \langle w, u \rangle + \langle w, v \rangle$

- 1. $\langle v, v \rangle = 0$ if and only if v = 0.
- 2. $\langle w, v \rangle = \langle v, w \rangle$.
- 3. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ for all $u, v, w \in V$.
- **4.** $\langle cw, u \rangle = c \langle w, u \rangle$ for all $u, w \in V$ and $c \in \mathbb{R}$.
- 5. $\langle v, v \rangle \ge 0$ for all $v \in V$.

Inner Products

Note

 \square For $v \in V$, $\langle 0, v \rangle = 0$, $\langle v, 0 \rangle = 0$.

0

General Inner product

Definition

Suppose that $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$ and that V is a vector space over \mathbb{F} .

Then an inner product on V is a function

 $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ such that the following three properties hold for all $c \in \mathbb{F}$ and all $\mathbf{v}, \mathbf{w}, \mathbf{x} \in V$:

- a) $\langle \mathbf{v}, \mathbf{w} \rangle = \overline{\langle \mathbf{w}, \mathbf{v} \rangle}$ (conjugate symmetry)
- b) $\langle v+cx,w\rangle = \langle v,w\rangle + c\langle x,w\rangle$ (linearity)
- c) $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$, with equality if and only if $\mathbf{v} = \mathbf{0}$. (pos. definiteness)

Inner Products for vectors

Note

 \square The standard inner product between vectors is: $(x, y \in \mathbb{R}^n)$

$$\langle x, y \rangle = x^T y = \sum x_i y_i$$

 \square The function $\langle \cdot, \cdot \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ defined by

$$\langle \mathbf{v}, \mathbf{w} \rangle = v^* \mathbf{w} = \sum_{i=1}^n \overline{v_i} w_i$$

for all $v, w \in \mathbb{C}^n$ is an inner product on \mathbb{C}^n .

Inner Products for matrices

Note

The standard inner product between two matrices is: $(X, Y \in \mathbb{R}^{m \times n})$

$$\langle X, Y \rangle = trace(X^TY) = \sum_{i} \sum_{j} X_{ij} Y_{ij}$$

Example

Find the inner products of following matrices:

$$U = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix},$$

$$U = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}, \qquad V = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

Inner Product for functions

Note

Let a < b be real numbers and let C[a,b] be the vector space of continuous functions on the real interval [a,b]. The function $\langle \cdot, \cdot \rangle : C[a,b] \times C[a,b] \to \mathbb{R}$ defined by

$$\langle f, g \rangle = \int_a^b f(x)g(x) dx$$
 for all $f, g \in C[a, b]$

is and inner product on C[a, b].

Inner Product for polynomials

Note

 \square For p(x) and q(x) with at most degree n:

$$\langle p(x), q(x) \rangle = p(0)q(0) + p(1)q(1) + \dots + p(n)q(n)$$

- \square For p(x) and q(x): $\langle p(x), q(x) \rangle = p(0)q(0) + \int_{-1}^{1} p'q'$
- \square For p(x) and q(x): $\langle p(x), q(x) \rangle = \int_0^\infty p(x)q(x)e^{-x}dx$

06

Inner Product Space

Inner product space

Definition

An inner product space is a finite-dimensional real or complex vector space V along with an inner product on V.

Euclidean Space Unitary Space

Resources

- Chapter 8: Kenneth Hoffman and Ray A. Kunze. Linear Algebra. PHI Learning,
 2004.
- □ Chapter 6: Sheldon Axler, Linear Algebra Done Right, 2024.
- Chapter 1: David C. Lay, Steven R. Lay, and Judi J. McDonald. Linear Algebra and Its Applications. Pearson, 2016.
- □ Chapter 2: David Poole, Linear Algebra: A Modern Introduction. Cengage Learning, 2014.
- Chaper1: Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 2016.

